
WORKING WITH FUNCTIONS
USING PYTHON

MODULE 3/4

Mrs. SUJATA PRADHAN
PGT(SS)

AECS,ANUPURAM

Concepts to be taught…

• Scope of a variable

• LEGB rule of python

• Local scope and Global scope

• Use of global keyword

SCOPE AND LIFETIME OF VARIABLES

Scope of a variable is the portion of a program where the variable is recognized.

Parameters and variables defined inside a function is not visible from outside.

Hence, they have a local scope.

There are two types of scope for variables in PYTHON

i) Local Scope

ii) Global Scope

The scope of a variable depends on the location where the variable is being

declared. The variable declared in one part of the program is not accessible to other parts
of the program.

The variable defined outside any function has a global scope whereas the variable

defined inside a function has a local scope. Local scope refers to variables defined in

current function . Always, a function will first look up for a variable name in its local scope. Only if
it does not find it there, the outer scopes are checked.

Local scope

def test():

X = 5

print(X)

The local scope of a variable is
its function. As we know, each
variable name belongs to a
namespace. If a variable is
created in a particular function,
then its scope is within that
function’s namespace . So any
variable inside the function will
be local to that namespace. In
the above example, the scope of
the variable X is test() only.

def message():

M= "hello ”

print(M)

message()

print(M)

print() statement outside the function
will cause an error as variable M has
a local scope.

M can not be accessible outside the
function.

EXAMPLE
A = ‘Global variable'

def fun():

print(A, ' inside a function')

fun()

print(A, ‘outside a function')

OUTPUT

Global variable inside function

Global variable outside function

We call fun() first, which is supposed to print the value of A. The function
will first look in its own local scope of A if is defined there. Since func() does
not define its own A, it will look one-level above in the global scope in
which A has been defined previously.

Scope resolution via LEGB rule

In Python, the LEGB rule is used to
decide the order in which the
namespaces are to be searched for
scope resolution.
The scopes are listed below in
terms of hierarchy from highest to
lowest.

• Local(L): Defined inside function
• Enclosed(E): Defined inside

enclosing
functions(Nestedfunction)

• Global(G): Defined at the
uppermost level

• Built-in(B): Reserved names in
Python built in modules

Scope resolution for variable names

namespace-hierarchy search order

Local -> Enclosed -> Global -> Built-in

Local can be inside a function.

Enclosed can be its enclosing function, e.g., if a function is wrapped inside another
function.

Global refers to the uppermost level of the executing entire program.

Built-in are special names that Python reserves for itself.

So, if a particular name:object mapping cannot be found in the local namespace,
the namespace of the enclosed scope is being searched next.If the search in the
enclosed scope is unsuccessful too, Python moves on to the global namespace and
eventually, it will search the built-in namespace.If a name cannot be found in any of
the namespaces, a NameError will be raised.

EXAMPLE

def my_func():

X = 10

print("Value inside function:",X)

X = 20

print("Value outside function:", X)

my_func()

print("Value outside function:", X)

OUTPUT:

Value outside function: 20

Value inside function: 10

Value outside function: 20

• Here, we can see that the value of X
is 20 initially.

• Even though the function
my_func() changed the value of X
to 10, it did not affect the value
outside the function.

• This is because the variable X
inside the function is different
(local to the function) from the one
outside.

• Although they have same names,
they are two different variables
with two different scope.

EXAMPLE (using GLOBAL AND LOCAL scope)

X=10

def exam():
print(X)

def test():
X = 5
print(X)

def marks(X):
print(X)

print(X)
exam()
test()
marks(20)

output:
10
10
5
20

• The first line creates a variable X that belongs
to the namespace of the file, so its scope is the
entire file. Hence print(X) displays 10.

• The exam() function creates its namespace, but
that namespace doesn't have an X in it. As
Python doesn't find X there, it checks the next
larger enclosing namespace and finds X. So
exam uses the variable X defined at the top
and displays 10.

• However, the test() function defines its own
variable named X with value 5, which has
higher priority over the first definition of X. So
any mention of X within the test function will
refer to that X, hence displaying 5.

• The marks() function also has an X in its own
namespace just like test() function has. So X
gets bound to whatever value is passed as an
argument to marks() function. Hence the outer
X is shadowed again in this function displaying
the output as 20.

NOTE : It is possible to modify the global variable by re-assigning a new value to it if we use the
global keyword. In order to modify the value of variables outside the function, they must be

declared as global variables using the keyword global

PROGRAM 1

A = ‘G value'
def func():

A= ‘L value'
print(A , ’inside function’)

print(A, ‘outside function')
func()
print(A, 'outside function')

OUTPUT
G value outside function
L value inside function
G value outside function

PROGRAM 2

A = ‘G value'
def func():

global A
A= ‘L value'
print(A , ’inside function’)

print(A, ‘outside function')
func()
print(A, 'outside function')

OUTPUT
G value outside function
L value inside function
L value outside function

Referenced Before Assignment

a=1

def fun():

global a

a+=1

print(a)

print(a)

fun()

print(a)

OUTPUT

1

2

2

a = 1
def fun():

a=5
a = a + 1
print(a)

print(a)
fun()
print(a)

OUTPUT
1
6
1

a = 1
def fun():

a = a + 1
print(a)

print(a)
fun()
print(a)
OUTPUT
UnboundLocalError: local variable 'a’ referenced before

assignment

conclusion:

Local Scope:

• Variable used inside the function has local scope.

• It cannot be accessed outside the function.

• In this scope, the lifetime of a variable inside a
function is as long as the function executes.

• They are destroyed once we return from the
function. Hence, a function does not remember
the value of a variable from its previous calls.

Global Scope:

• Variable can be accessed outside the function.

• In this scope, Lifetime of a variable is the period
throughout which the variable exists in the
memory.

• On the other hand, variables outside the function
are visible from inside. They have a global scope.

• We can read these values from inside the function
but cannot change (write) them.

• In order to modify the value of variables outside
the function, they must be declared as global
variables using the keyword global.

WORKSHEET
1. Define scope of a variable.
2. What is LEGB rule? Explain it.
3. What is the difference between local and global variable?
4. What is the significance of global keyword?
5. What is scope and what is the scope resolving rule in python.
6. What will be the output of the following program?

num=1
def myfunc():

global num
num=10
return num

print(num)
print(myfunc())
print(num)

7. Name the local,global variables and inbuilt functions used in the program and write the output.
L=”big names”
pos=200
level=1
def play():

max=level+10
print(len(L)==0)
return max

res=play()
print(res)

WORKSHEET
8. Find and write the output of the following Python code:-

x=1

def cg():

global x

x=x+1

cg()

print(x)

9. What will be the output of the following Python code?

def f():

global a

print(a)

a = "hello“

print(a)

a = "world“

f()

print(a)

10. What will be the output of the following Python code?

x = 5

def f1():

global x

x = 4

def f2(a,b):

global x

return a+b+x

f1()

total = f2(1,2)

print(total)

